
Mobile Application Builder-Android Guide
Oracle Banking Digital Experience

Patchset Release 22.2.2.0.0

Part No. F72987-01

December 2023

Mobile Application Builder-Android Guide

December 2023

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2022, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Intended Audience .. 1–1

1.2 Documentation Accessibility ... 1–1

1.3 Access to Oracle Support ... 1–1

1.4 Structure ... 1–1

1.5 Related Information Sources .. 1–1

2. OBDX Servicing Application ... 2–1

2.1 Prerequisites ... 2–1

2.2 Create project using Remote UI ... 2–3

2.3 Local UI by running on local machine or local server. .. 2–3

2.4 Importing in Android Studio .. 2–6

2.5 Widget Functionality ... 2–7

2.6 Scan to Pay from Application Icon – ... 2–8

2.7 Scan Card using Augmented Reality .. 2–8

2.8 Passkey (Passwordless login) .. 2–8

2.9 Deeplinking - To open reset password, claim money links with the application 2–11

2.10 Device Registration and Push Registration Functionality... 2–13

3. Google Play Integrity ... 3–1

4. FCM Push Notifications... 4–6

5. Build Release Artifacts .. 5–1

6. OBDX Authenticator Application ... 6–10

6.1 Authenticator UI (Follow any one step below) .. 6–10

6.2 Authenticator Application Workspace Setup .. 6–11

7. Application Security Configuration ... 7–1

8. Live Experience With Jumio Integration ... 8–1

9. Adding Custom Cordova Plugin .. 9–1

10. ODA Chatbot Inclusion .. 10–4

11. Live Experience Integration .. 11–7

12. Push Notification 2FA configuration .. 12–9

Preface

1–1

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

• Customers

• Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

• Introduction

• Preferences & Database

• Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Patchset Release 22.2.1.0.0, refer to
the following documents:

• Oracle Banking Digital Experience Installation Manuals

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

OBDX Servicing Application

2–1

2. OBDX Servicing Application

2.1 Prerequisites

OBDX Android App is supported only on versions n (current) and n-1 release.

a. Download and Install node Js (will be downloaded to default path)

b. Install node js from https://nodejs.org

c. DOWNLOAD AND INSTALL ANDROID STUDIO

d. Download and install Android Studio from
https://developer.android.com/studio/index.html

e. Download and Install Android platforms

f. Update Android SDK to latest API Level.

g. Gradle Version: gradle-4.6

h. Android Gradle Plugin Version (3.4.0): 'com.android.tools.build:gradle:3.4.0' or above

i. Set Environment variables

j. Set following system variables:

1. Click on Windows key and type Environment Variables.

2. A dialog box will appear. Click on the Environment Variables button as shown below

3. NODEJS <nodejs_path> Example: “C:\Program Files\nodejs\”.

https://nodejs.org/
https://developer.android.com/studio/index.html

OBDX Servicing Application

2–2

k. Add the above variables in “PATH” system variable.

OBDX Servicing Application

2–3

In 20.1, you can create app in two ways-using local UI or using remote UI (if want to create using
remote go to section Create project using Remote UI2.2 else directly to section Local UI)

2.2 Create project using Remote UI

a. Index.html changes(use Android Studio or any other editor)

• Update the server URL in app.properties against KEY_SERVER_URL key. This is the URL
where the UI is also hosted.

After this proceed to 2.4 Importing in Android Studio directly.

2.3 Local UI by running on local machine or local server.

2.3.1 Adding UI to workspace

Use any 1 option below of a/b

a) Building un-built UI (required in case of customizations)

1. For this version, since the UI is built with webpack, the built UI cannot be modified from
with the mobile workspace as it is minified code. Hence, either bank can hoist the UI is
two ways:

• Use local machine as local server and host the UI on local development machine and
connect the application using localhost.

• OR host the UI on local development server and point the application to that server
URL

1. UI is same for internet and mobile, same build process of internet to be followed.

Bank can follow the UI build steps from “Oracle Banking Digital Experience User
Interface Guide”.

2. For building UI for mobile, Open scripts->webpack->webpack.dev.js and add below line
in devServer object:

as below:

 headers: {

 "Access-Control-Allow-Origin": "*"

 },

SAMPLE:

 devServer: {

 static: path.join(__dirname,

 "../../dist"),

 compress: true,

OBDX Servicing Application

2–4

 port: 4000,

 hot: false,

 client: false,

 headers: {

 "Access-Control-Allow-Origin": "*"

 },

3. Also, in webpack.dev.js comment out below lines inside “entry” key.

entry: {

 // main: "framework/js/configurations/require-config.js",

 // Runtime code for hot module replacement

 //hot: 'webpack/hot/dev-server.js',

 // Dev server client for web socket transport, hot and live reload logic

//client: 'webpack-dev-server/client/index.js?hot=true&live-//reload=true',

 },

4. Once the UI is built, run below command to start a local server on the development
machine using below command:

• npm run start

• Once this server starts, below is the window which appears. This indicates local server
is started.

• Point the “key_server_url” to http://localhost:4000 and run the application on simulator.
To run on device, the internet proxy should allow localhost domain to accept incoming
requests.

http://localhost:4000/

OBDX Servicing Application

2–5

If it is blocked, UI should be built and “npm start” command should be executed on
a development server machine which is accessible in the network. They
“key_server_url” will then point to that local server URL instead of localhost

b) Using built UI (out of box shipped with installer)

Available at --

OBDX_Installer/installables/ui/deploy (Main release, OBDX installer),
OBDX_Patch_Installer/installables/ui/deploy (Patchsets)

• There will be production enabled dist generated in the built UI.

• Bank can either directly deploy this dist to their server and point the application to that
server as mentioned in point a above OR

• Bank can copy the dist folder in their workspace and follow steps from point 3in section
2.5.

• If bank wants to do any changes, point a) steps needs to be followed.

NOTE: If banks want to debug UI in production builds, then dist should be created with
below configuration enabled in webpack.prod.js

devtool: 'eval',

• This will however increase the files deployed on server and reduce the proformance
on production. Refer Webpack documentation
https://webpack.js.org/configuration/devtool/ for more details.

2.3.2 Create Project Using local UI within the workspace

1. Extract the unbuilt UI and follow steps up to 5 in the above section 2.4.

2. After step 4, run below command to generate dist folder.

npm run webpack-dev – this will generate development enabled dist

npm run webpack-build- this will generate production enabled dist

3. Once the dist folder is created, copy all files inside dist folder and save it in the

workspace_installer/zigbank/platforms/android/app/src/main/assets/www/.

https://webpack.js.org/configuration/devtool/

OBDX Servicing Application

2–6

4. Open Index.html and home.html and add below line inside head section below meta tag

<script src="cordova.js" type=”text/javascript”></script>

5. Set the server URL in app.properties against key_server_url. This is the URL where backend
services are hosted.

6. With this setup, since the files generated in dist folder are minified format we cannot change
the code. If any change needs to be done in any UI file, then the changes must be done in the
UI folder, built it again to generate dist and copy the files to workspace again. Since this is
tedious process, we recommend to setup local server and host UI there for development.

2.4 Importing in Android Studio

Open Android Studio

1. Import zigbank/platforms/android in android studio by clicking on Open an Existing Project.

OBDX Servicing Application

2–7

2.5 Widget Functionality

Widgets are Android native feature. Below widgets are available in the application

1. All Accounts Widgets – Widget, showing all accounts balances & account numbers.

2. Account Details Widget - Widget, showing account balance of default account and last 5
transactions of the same account, can be added to the phone home screen. If default account
is not set, then the details of the account fetched first is shown.

3. Multi-Functional Widget – Widget showing default account balance. If default account is not
present, it shows details of account fetched first. Additionally, it has option to scan to pay
feature

4. Scan to Pay Widget – Widget which allows to scan to pay.

Prerequisite:

Quick Snapshot feature needs to be enabled in the app application from the login screen. (Refer
function doc - User Manual Oracle Banking Digital Experience Quick Snapshot.docx)

Please enable below property in app.properties file

<bool name="ENABLE_WIDGET">true</bool>

OBDX Servicing Application

2–8

If bank does not want this feature, then they can disable this by making above flag to false.

2.6 Scan to Pay from Application Icon –

Users can long press on bank’s application icon on home screen and click on scan-to-pay option
to scan QR and make payments.

To enable this feature uncomment below from app’s AndroidManifest.xml

2.7 Scan Card using Augmented Reality

Users can scan card and view account details and transactions of the account associated with the
card.

To enable this feature, do the same step which is mentioned on 2.6 section.

2.8 Passkey (Passwordless login)

Passkeys are a safer and easier replacement for passwords. With passkeys, users can sign in to
apps and websites using a biometric sensor (such as a fingerprint or facial recognition), PIN, or
pattern. This provides a seamless sign-in experience, freeing your users from having to remember
usernames or passwords.

Passkeys are supported only on devices that run Android 9 (API level 28) or higher

TO DISBALE THIS OPTION:

By doing this, passkey option will not be available to users withing the application. User will not be
able to register for passkey and also will not be able to login using passkey. Follow below steps

OBDX Servicing Application

2–9

a. Remove RTM access from Client Servicing -> Authentication - > Passkey Setup for
Mobile Application/Mobile (Responsive) and Internet touch points

b. Set this flag in channel-framework-js-configurations-config..js to false

thirdPartyAPIs -> passkey -> required -> false

TO ENABLE THIS OPTION:

1. Add RTM access from Client Servicing -> Authentication - > Passkey Setup for Mobile
Application,Mobile (Responsive) and Internet touch points

2. Set this flag in channel-framework-js-configurations-config.js to true

thirdPartyAPIs -> passkey -> required -> true

3. Along with above, we need below server side and application side settup

Server-Side Setup:

1. Update the relying party in below property select prop_value from digx_fw_config_all_b
where prop_id='PASSKEY_RP_ID'

2. Note – Relying partId is the domain name if the website to which credentials will be
associated. (Eg google.com, example.com etc)

Relying party origin is the relying party of website prefixed with protocol without the port.

(E,g, https://google.com, https://example.com)

a. Create assetlinks file (assetlinks.json) -

A Digital Asset Links JSON file must be published on your website to indicate the Android
apps that are associated with the website and verify the app's URL intents.

https://google.com/

OBDX Servicing Application

2–10

The following example assetlinks.json file grants link-opening rights to a com.example
Android app:

[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target": {

 "namespace": "android_app",

 "package_name": "com.example",

"sha256_cert_fingerprints":["14:6D:E9:83:C5:73:06:50:D8:EE:B9:95:2F:34:FC:64:16:A0:
83:42:E6:1D:BE:A8:8A:04:96:B2:3F:CF:44:E5"]

 }

}]

The JSON file uses the following fields to identify associated apps:

package_name: The application ID declared in the app's build.gradle file.

sha256_cert_fingerprints: The SHA256 fingerprints of your app’s signing certificate. You
can use the following command to generate the fingerprint via the Java keytool:

keytool -list -v -keystore my-release-key.keystore

b. Publish assestlinks.json file-

This file needs to be on https server with valid SSL certificate

You must publish your JSON verification file at the following location:

 https://domain.name/.well-known/assetlinks.json

For example, if your sign-in domain is signin.example.com, host the JSON file at
https://signin.example.com/.well-known/assetlinks.json.

Verify your assetlink json on below statement list tester-

https://developers.google.com/digital-asset-links/tools/generator

The MIME type for the Digital Assets Link file needs to be JSON. Make sure the server
sends a Content-Type: application/json header in the response.

Need to change host and port in Obdx.conf as,

https://domain.name/.well-known/assetlinks.json

OBDX Servicing Application

2–11

ProxyPass "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

ProxyPassReverse "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-
known"

After the setup is done, this file must be accessible on mobile browser with this url. There
should not by any redirects for accessing this file.

c. Add assetlinks.json file host in app’s strings.xml file.

2.9 Deeplinking - To open reset password, claim money links
with the application

Please add host url under data tag in app’s AndroidManifest.xml as,

http://100.76.157.55:7003/digx-admin/sms/v1/.well-known
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known

OBDX Servicing Application

2–12

Note – Please add host url without https or http.

For e.g. If your deeplink url is https://exmple.com/test then you can add only example.com in the
data tag

Similary you can add the same host url in app’s config.xml under universal-links tag as,

https://exmple.com/test

OBDX Servicing Application

2–13

2.10 Device Registration and Push Registration Functionality

In this version, only one device is allowed to be registered for alternate login for the same
username. If user tries to register another device with same username for alternate login, then the
previous registration on other devices will be removed. User will get an error message if he/she
tries to use PIN/PATTERN/BIOMETRIC on the de-registered devices.

While user registers his second device or same device again (by re-installing the application), a
popup will appear to notify the same.

If user confirms, then the current device will be registered, and all previous registrations will be
removed.

If user cancel, the process is exited.

Also, in this version, only one device is allowed to be registered for push.

Bank can allow multiple devices to be registered for same username in their setup by setting below
two configurations:

ALLOWED_DEVICE_COUNT to any value between than 1 and 100.

• 1 will allow on one device registration.

• 100 will allow more than one device registration

OBDX Servicing Application

2–14

ALLOWED_PUSH_DEVICE_COUNT any value between 1 and -1

• 1 will only one one device to be registered for push.

• -1 will only multiple devices to be registered for push

Google Play Integrity

3–1

3. Google Play Integrity

a. Go to URL https://console.developers.google.com/

b. Create a new Project and set name of you project

c. Choose ‘API’s & Services’ option from side bar.

d. In API’s & Services > Dashboard > Choose ‘Enable APIS AND SERVICES’.

e. This will redirect to ‘Library’ where we need to search ‘Google Play Integrity API’.

f. Click on Google Play Integrity API and enable it

https://console.developers.google.com/

Google Play Integrity

3–2

g. If the application usage is high, the quota request form needs to be submitted. Please fill quota
request form from below site. Also select below options.

https://support.google.com/googleplay/android-developer/contact/piaqr

https://support.google.com/googleplay/android-developer/contact/piaqr

Google Play Integrity

3–3

 Quota request - Estimated total queries per day * → The approximate load, Play
Integrity API is called once each time the app in opened

Google Play Integrity

3–4

Quota request - Estimated peak queries per second → Leave blank

h. To enable Play Integrity responses please follow below steps-

 Go to Google Play Console->Side Menu->Setup->App Integrity

Click on Link project and then link your existing google cloud project. If it is not created then create
new and link the same.

 i. Add project number in below property of app.properties

 <string name="GOOGLE_CLOUD_PROJECT_NO">@@GOOGLE_CLOUD_PROJECT NO</string>

 You will get the project number on google cloud console project

Google Play Integrity

3–5

j. Mention the time in seconds to which app can hit the play integrity api. By default it is
300seconds but you can configure as per the requirement. Please use below property in
RootCheckFlags.java(workspace_installer/zigbank/platforms/android/app/src/main/java/com/ofs

s/digx/mobile/android/)

 long playIntegrityAPICallTime = your_time_in_seconds;

FCM Push Notifications

4–6

4. FCM Push Notifications
a. Go to URL https://firebase.google.com/

b. Traverse to console and create a project

c. Download google-services.json from below page and save to (zigbank\platforms\android\app)
directory.

d. Remember to keep the projects package name and firebase package name same.

https://firebase.google.com/

FCM Push Notifications

4–7

e. Traverse to cloud messaging tab Enable Firebase Cloud Messaging API(V1) by clicking on
Manage API in Google Cloud Console.

 f. Get the Project ID from Project Setting in Firebase console

g. Update FCM URL in below table as-

update DIGX_FW_CONFIG_ALL_B set prop_value =
'https://fcm.googleapis.com/v1/projects/YOUR_PROJECT_ID/messages:send' where prop_id
= 'FCM_URL';

Add YOUR_PROJECT_ID in url which is captured on above step

h. If proxy address is to be used, provide the same in database as mentioned in point 3.

i. Generate private key for your service account by using below steps-

 - In the Firebase console, open Settings > Service Accounts

https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk

FCM Push Notifications

4–8

 - Click Generate New Private Key, then confirm by clicking Generate Key

You can also follow below google doc -

 https://firebase.google.com/docs/cloud-messaging/auth-server#provide-credentials-manually

Sr.
No.

Table PROP_ID CATEGORY
_ID

PROP_VALUE Purpose

1 DIGX_FW_C
ONFIG_VAR
_B

FCM DispatchDeta
ils

<Server_Key> Service account
json file content
captured in above
step

2 DIGX_FW_C
ONFIG_ALL_
B

FCMKeyStore DispatchDeta
ils

DATABASE or
CONNECTOR

Specifies whether
to pick server key
from database or
from connector.
Default DB (No
change)

3 DIGX_FW_C
ONFIG_ALL_
B

Proxy DispatchDeta
ils

<protocol,proxy
_address>

Provides proxy
address, if any, to
be provided while
connecting to
APNS server.
Delete row if proxy
not required.
Example:
HTTP,148.50.60.8

FCM Push Notifications

4–9

If CONNECTOR is selected in Step 2 update password as below

Home

Build Release Artifacts

5–1

5. Build Release Artifacts

1. Clean and Rebuild your project in Android Studio.

2. In Android Studio, on the menu bar Click on Build -> Edit Build Types -> select release

3. Set Minify Enabled -> True & click on Proguard File selection -> Navigate to proguard-
rules.pro (zigbank\platforms\android\app)

Build Release Artifacts

5–2

4. Click on OK -> again click on OK.

5. Adding URLs to app.properties.xml (customizations/src/main/res/values/)

a. NONOAM (DB Authenticator setup)

SERVER_TYPE NONOAM

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443

WEB_URL Eg. https://mumaa012.in.oracle.com:18443

SERVER_CERTIFICATE_KEY Refer point 6.7

b. OBDXTOKEN (Token based mechanism)

SERVER_TYPE OBDXTOKEN

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443

WEB_URL Eg. https://mumaa012.in.oracle.com:18443

SERVER_CERTIFICATE_KEY Refer point 6.7

c. OAM Setup (Refer to installer pre requisite documents for OAuth configurations)

SERVER_TYPE OAM

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443

(This URL must be of OHS without webgate)

WEB_URL Eg. https://mumaa012.in.oracle.com:18443

KEY_OAUTH_PROVIDER_URL http://mum00aon.in.oracle.com:14100/oauth2/rest/token

APP_CLIENT_ID <Base64 of clientid:secret> of Mobile App client

APP_DOMAIN OBDXMobileAppDomain

WATCH_CLIENT_ID <Base64 of clientid:secret> of wearables

WATCH_DOMAIN OBDXWearDomain

SNAPSHOT_CLIENT_ID <Base64 of clientid:secret> of snapshot

SNAPSHOT_DOMAIN OBDXSnapshotDomain

LOGIN_SCOPE OBDXMobileAppResServer.OBDXLoginScope

SERVER_CERTIFICATE_KEY Refer point 6.7

https://mumaa012.in.oracle.com:18443/
https://mumaa012.in.oracle.com:18443/
https://mumaa012.in.oracle.com:18443/
https://mumaa012.in.oracle.com:18443/

Build Release Artifacts

5–3

d. IDCS Setup

SERVER_TYPE IDCS

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443

(This URL must be of OHS without webgate)

WEB_URL Eg. https://mumaa012.in.oracle.com:18443

KEY_OAUTH_PROVIDER_URL http://obdx-
tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token

APP_CLIENT_ID <Base64 of clientid:secret> of Mobile App client

WATCH_CLIENT_ID <Base64 of clientid:secret> of wearables

SNAPSHOT_CLIENT_ID <Base64 of clientid:secret> of snapshot

LOGIN_SCOPE obdxLoginScope

OFFLINE_SCOPE

urn:opc:idm:__myscopes__ offline_access

SERVER_CERTIFICATE_KEY Refer point 6.7

6. Domain Based Setup (This is same for OBDX servicing App and Authenticator App)

To use domain based setup please enable below flag in app.properties file -

<string name="DOMAIN_BASED_CATEGORIZATION">true</string>

If you are using local UI then enable below flag in
config.js(platforms/android/app/src/main/assets/www/framework/js/configurations/config.js)
file -

domainDeployment: {

 enabled: true

}

7. Adding chatbot support to mobile application (Optional)

CHATBOT_ID The tenant ID

CHATBOT_URL

The URL for the ChatApp application in ODA

8. If using http protocol for development add (android:usesCleartextTraffic="true") to application
tag of AndroidManifest.xml (on app & obdxwear target)

http://obdx-tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token
http://obdx-tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token

Build Release Artifacts

5–4

9. For Generating Signed Apk: To Generate release-signed apk as follows:

On menu bar click on Build -> Generate Signed Apk

Build Release Artifacts

5–5

10. If you have an existing keystore.jks file then select choose Existing else click on Create New

Build Release Artifacts

5–6

11. Select Build Type as Release, Signature Version as V1(JAR Signature) and V2(Full APK
Signature) and Change APK Destination folder if you want and click on Finish

Build Release Artifacts

5–7

12. This will generate APK by the given name and destination folder. Default APK Destination
folder is zigbank\platforms\android\app\release

13. Run the App and select Device or Simulator.

14. Repeat same steps (From step 8 and obdxwear as module) for OBDX Wear App for
Release Signing. Use proguard-rules.pro from
workspace_installer\zigbank\platforms\android\obdxwear using explorer. The select
obdxwear as the module and follow same signing steps with same keystore.

15. The application has a config page at launch to enter the URL of the server (for development
only). To remove this page, update the config.xml as shown below

The application has config page to add URL. This is for development purpose only and can be
removed using below step. (Update content src tag)

Build Release Artifacts

5–8

16. Application will work on https only. If you want to run application on http then set
targetSdkVersion, compileSdkVersion to 30 and buildToolsVersion to 30.0.3 in app’s
build.gradle(zigbank\platforms\android\app\) and remove remove below code from
obdx.conf(config/obdx.conf).

<IfModule mod_headers.c>

 <If "%{HTTP_USER_AGENT} =~ /obdx-mobile-android/">

 Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

 </If>

 <If "%{HTTP_USER_AGENT} =~ /obdx-softtoken/">

 Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

 </If>

</IfModule>

17. To enable App Widget, please enable below flag in app.properties file:

<bool name="ENABLE_WIDGET">true</bool>

18. Disable below flag to reset the Biometric Alternate login on Add/Remove Fingerprint from
mobile.

<bool name="ALLOW_FACE_BIOMETRIC">false</bool>

Note – This reset feature will support only if above flag is false.

19. Maintenance page configs-

Build Release Artifacts

5–9

 Enable below flag to show maintenance page when server is under maintenance

 <string name="SHOW_MAINTENANCE_PAGE">true</string>

 Also add the status code returned when server is under main in below property-

 <string-array name="MAINTENANCE_PAGE_STATUS_CODE">

 <item>Your Status Code</item>

 </string-array>

 Note- You can add multiple status code

20. To disable caching in app, make below flag to flase

<bool name="ENABLE_CACHING">true</bool>

OBDX Authenticator Application

6–10

6. OBDX Authenticator Application

1. This is an Authenticator Application which is used when bank has enabled Soft Token
Authentication as Authentication mechanism for any transaction. This application basically
supports one of below authentication:

• HOTP: Random based Soft Token

• TOTP: Time based Soft Token

2. Users should have this application installed and logged in and PIN is set before initiating any
transaction which needs this token.

3. Based on the configuration set, user can any time log in with PIN and check the token and
use that token for completing any transaction based on “Soft Token Authentication”

6.1 Authenticator UI (Follow any one step below)

6.1.1 Using built UI

For TOKEN-BASED - Unzip dist.tar.gz directory fromOBDX_Patch_Mobile\authenticator\TOKEN-
BASED

6.1.2 Building UI manually

Extract authenticator_ui.tar.gz from OBDX_Patch_Mobile\authenticator\unbuilt_ui.

The folder structure is as shown:

OBDX Authenticator Application

6–11

6.2 Authenticator Application Workspace Setup

1. Copy UI (Directories – components, css, framework, images, pages, resources)from /dist
directory to workspace/installer/app/src/main/assets/www/

In case any popup appears, click replace

2. Launch Android Studio and open existing project

OBDX Authenticator Application

6–12

3. Open OBDX_Installer/workspace_installer folder in Android Studio.

4. Open gradle.properties file and update following properties with relevant proxy address if
required

OBDX Authenticator Application

6–13

5. Open “assets\app.properties” file and update following properties as per requirement

systemProp.http.proxyHost = <proxy_address>

systemProp.https.proxyPort = <port_number>

systemProp.https.proxyHost = <proxy_address>

systemProp.http.proxyPort = <port_number>

OBDX Authenticator Application

6–14

Set OTP type to HOTP/TOTP as per requirement.

Set Server Type to OBDXTOKEN

Set MAX No Attempts greater than 0

Set UI Device root check to true if you want to add check on login button.

Note: If selected authentication mechanism is not OAM based then remove “shared_oam_url”
property.

6. Click Build → Clean & Build → Rebuild project in Android Studio.

7. Click on Build → Edit Build Type → app → release

Enable minify → true

Add progurard file from workspace_installer/proguard-rules.pro

Click OK

8. If using http protocol for development add (android:usesCleartextTraffic="true") to application
tag of AndroidManifest.xml

9. For Generating Signed Apk: To Generate release-signed apk as follows:

10. On menu bar click on Build -> Generate Signed Apk

OBDX Authenticator Application

6–15

OBDX Authenticator Application

6–16

Click Finish to generate .apk

The application has config page to add URL. This is for development purpose only and can be
removed using below step. (Update content src tag)

Home

Application Security Configuration

7–1

7. Application Security Configuration

Root Check → Ensure Step 3.1 is completed

1. Open google developer console. Select your app then navigate to

Setup-> App Integrity-> change option of Response Encryption

In the window that appears, click Manage and download my response encryption keys and
follow below steps to generate response encryption keys-

a. Create a new private-public key pair. RSA key size must be 2048 bits using below
command-

 openssl genrsa -aes128 -out your_path/private.pem 2048

 Then use your password phrase for creating private.pem and also use the same password
for verifying the private.pem. Then hit the below command.

 openssl rsa -in your_path/private.pem -pubout -out your_path/public.pem

 Enter the same password which you have used while creating private.pem. These two files
will now appear on your mentioned path. Then upload the public.pem file on the window which
was appeared after clicking on Manage and download my response encryption keys
option.Once you upload the public.pem file it will automatically download
your_app_pkg_name.enc file. Then hit below command as,

openssl rsautl -decrypt -oaep -inkey your_path/private.pem -in your_app_pkg_name.enc -out
your_path/api_keys.txt

Enter the password for private.pem. It will create api_keys.tx file on your path. It must be consist
of VERIFICATION_KEY and DECRYPTION_KEY.

2. Maintain this VERIFICATION_KEY and DECRYPTION_KEY in DIGX_FW_CONFIG_ALL_B
table corresponding to the following keys respectivel:

PLAY_INTEGRITY_ENCRYPTION_KEY and PLAY_INTEGRITY_DECRYPTION_KEY

An example query will be:

update DIGX_FW_CONFIG_ALL_B set prop_value = 'YOUR_DECRYPTION_KEY' where
prop_id = 'PLAY_INTEGRITY_DECRYPTION_KEY';

update DIGX_FW_CONFIG_ALL_B set prop_value = 'YOUR_ENCRYPTION_KEY' where
prop_id = 'PLAY_INTEGRITY_ENCRYPTION_KEY';

3. Similarly, Obtain the same keys for authenticator app by using above step 1 and then maintain
those in DIGX_FW_CONFIG_ALL_B table corresponding to the following keys respectivel:

PLAY_INTEGRITY_ENCRYPTION_KEY_AUTHENTICATOR and
PLAY_INTEGRITY_DECRYPTION_KEY_AUTHENTICATOR

Application Security Configuration

7–2

An example query will be:

update DIGX_FW_CONFIG_ALL_B set prop_value = 'YOUR_DECRYPTION_KEY' where
prop_id = 'PLAY_INTEGRITY_DECRYPTION_KEY_AUTHENTICATOR';

update DIGX_FW_CONFIG_ALL_B set prop_value = 'YOUR_ENCRYPTION_KEY' where
prop_id = 'PLAY_INTEGRITY_ENCRYPTION_KEY_AUTHENTICATOR';

4. Similarly, we also have to maintain package names of Servicing and Authenticator app in the
same table, i.e. DIGX_FW_CONFIG_ALL_B corresponding to the following keys
respectively:

ANDROID_SERVICING_PACKAGE and ANDROID_AUTHENTICATOR_PACKAGE

An example query will be:

insert into digx_fw_config_all_b (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,
CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,
OBJECT_VERSION_NUMBER) values ('ANDROID_SERVICING_PACKAGE',
'mobileconfig', 'com.ofss.zigbank', 'N', '', 'Stores device id in OUD', 'ofssuser', sysdate,
'ofssuser', sysdate, 'Y', 1,);

 SSL Pinning

5. Get the list of Base 64 encoded SHA256 hashed certificates' public keys of server’s valid
certificates. Use below command to generate this hash for your certificate. Replace
'<certificate.der>' with the path to your certificate.

openssl x509 -inform der -in <certificate.der> -pubkey -noout | openssl pkey -pubin -outform
der | openssl dgst -sha256 -binary | openssl enc -base64

6. Add the hashed keys generated in point 6 to
zigbank\platforms\android\customizations\src\main\res\values\app.properties.xml file
in ‘certificate_public_keys’ array. Append this key to ‘sha256/’ in an <item> tag as shown
below. Multiple certificate keys can be added to ‘certificate_public_keys’ array by adding them
in <item> tags.

Eg.:

<string-array name="certificate_public_keys">

 <item>sha256/5kJvNEMw0KjrCAu7eXY5HZdvyCS13BbA0VJG1RSP91w=</item>

</string-array>

Eg. for multiple certificates (In case OAM/IDCS is used):

<string-array name="certificate_public_keys">

 <item>sha256/5kJvNEMw0KjrCAu7eXY5HZdvyCS13BbA0VJG1RSP91w=</item>

 <item>sha256/3rgsgghoqrDegekpkkgk92Fgw1w7exyYCS1okef9Oo1w=</item>

</string-array>

Home

Live Experience With Jumio Integration

8–1

8. Live Experience With Jumio Integration

1. Download live experience android sdk from below download link.

https://www.oracle.com/downloads/cloud/oracle-live-experience-downloads.html

2. Import ‘oracle.live.api-release’ file as a New Module.

https://www.oracle.com/downloads/cloud/oracle-live-experience-downloads.html

Live Experience With Jumio Integration

8–2

3. Add Live Experience Client ID and Cloud Address in below two properties under
app.properties.xml(zigbank\platforms\android\customizations\src\main\res\values)

<string name="LX_CLIENT_ID">@@CLIENT_ID</string>

<string name="LX_ADDRESS">@@ADDRESS</string>

Note: Add LX_ADDRESS without https://

For example. If the LX_ADDRESS is https://live.oraclecloud.com then add only
live.oraclecloud.com.

4. Click Next and navigate to oracle.live.api-release aar file location and click Finish.

5. Un-comment the Live Experience SDK’s from zigbank\platforms\android\app\build.gradle.

https://live.oraclecloud.com/

Live Experience With Jumio Integration

8–3

6. Un-comment the gradle maven files for Live Experience from zigbank\platforms\android\
build.gradle

7. Add LiveExperienceActivtiy.java folder from AppExtensions\live experience\ at
zigbank\platforms\android\app\src\main\java\com\ofss\digx\mobile\android

Live Experience With Jumio Integration

8–4

8. Add libs folder at zigbank\platforms\android\app and copy below jars from downloaded sdk
folder in it.

i) oracle.wsc.feature.clientsdk.android-7.2.1.1-SNAPSHOT.jar

ii) peerconnection_android-84.0.4147.105-25c2ac74afc25f65d111771dbfabd6db25d2498.jar

iii) tyrus-standalone-client-1.13.jar

9. Un-comment LiveExperienceActivity and NetverifyActivity from
zigbank\platforms\android\app\src\main\AndroidManifest.xml

Live Experience With Jumio Integration

8–5

Home

file:///D:/Work/21.1/SVN%20Docs/OBDX/Tech_docs/Oracle%20Banking%20Digital%20Experience%20Mobile%20Application%20Builder-Android.docx%23toc

Adding Custom Cordova Plugin

9–1

9. Adding Custom Cordova Plugin

Step 1 -

 Create java folder and add yout package under app(zigbank\platforms\android\app)

 Create java file under your package which will extends CordovaPlugin

 Override execute method with JsonArray as a parameter

 Retrive jsonobject from JsonArray and get the data which passed from js file

 Example:

 public class GetDirectionMapPlugin extends CordovaPlugin {

 @Override

 public boolean execute(String action, JSONArray args, CallbackContext callbackContext)

 throws JSONException {

 try{

 JSONObject object = args.getJSONObject(0);

 String yourKey = object.getString("your_key");

 }catch (Exception e){

 Log.e(TAG,e.getMessage());

 }

 return true;

 }

 }

Step 2 –

 Create plugin file under plugins folder of

 www(zigbank\platforms\android\service\workspace\app\src\main\assets\www\plugins)

 Example:

 cordova.define("cordova-plugin-getdirection", function(require, exports, module) {

Adding Custom Cordova Plugin

9–2

 var exec = cordova.require('cordova/exec');

 exports.navigate = function(args, successCallback, errorCallback) {

 cordova.exec(successCallback, errorCallback, "GetDirectionMapPlugin", "direction",

 [args]);

 };

 });

 cordova-plugin-getdirection.getDirectionPlugin -> user defined id from

cordova_plugin.js(zigbank\platforms\android\service\workspace\app\src\main\assets\ww

 w\cordova_plugin.js)

 GetDirectionMapPlugin-> name of java plugin class

direction -> action

 navigate -> this can be use in js file to this function

Step 3 –

 Make entry of plugin in

cordova_plugin.js(zigbank\platforms\android\service\workspace\zigbank\platforms\android\app\sr

 c\main\assets\www) as below ->

 Example:

 {

 "id": "cordova-plugin-getdirection.getDirectionPlugin", -> user defined id

 "file": "plugins/cordova-plugin-getdirection/www/mapgetdirection.js", -> path of plugin js

 file

 "pluginId": "cordova-plugin-getdirection",

 "clobbers": [

 "window.getDirection" -> this can be used in js file to call plugin

]

 }

Adding Custom Cordova Plugin

9–3

Step 4 -

 Make entry of java plugin class in

config.xml(zigbank\platforms\android\service\workspace\zigbank\platforms\android\app\src\main\r

 es\xml) file of app as below -

 Example:

<feature name="GetDirectionMapPlugin">

<param name="android-package" value="Your_Plugin_Java_Class_Path" />

</feature>

 GetDirectionMapPlugin -> Name of java plugin class

 Step 5 -

 Plugin calling in js file ->

 Example:

 window.getDirection.navigate({

 originLatLng: origin,

 destinationLatLng: location

 })

 window.getDirection -> clobber define in the cordova_plugin.js file

 navigate -> name of the function defined in plugin js file

Home

file:///D:/Work/20.1.0.3/New%20folder/Oracle%20Banking%20Digital%20Experience%20Mobile%20Application%20Builder-Android.docx%23toc

ODA Chatbot Inclusion

10–4

10. ODA Chatbot Inclusion

To enable ODA Chatbot services in the mobile app, the following changes needs to be made:

1. Copy ODAPlugin.java from workspace_installer/AppExtension/oda to
workspace_installer/zigbank/platforms/android/app/src/main/java/com/ofss/digx/mobile/androi
d/plugins/

2. Download ODA Android sdk from below link-

https://www.oracle.com/downloads/cloud/amce-downloads.html

3. Add libs folder at zigbank\platforms\android\app and copy below files from

downloaded sdk folder in it.

a. com.oracle.bots.client.sdk.android.core-xx.aar

b. com.oracle.bots.client.sdk.android.ui-22.04.aar

https://www.oracle.com/downloads/cloud/amce-downloads.html

ODA Chatbot Inclusion

10–5

4. In Android Studio follow below steps-

File -> Project Structure -> Dependencies

5. Click on "+" icon and select JR/AAR Dependency and select app module and click

Ok.

ODA Chatbot Inclusion

10–6

6. Add both .aar file paths from step3. Then click Apply and Ok.

7. Add Chatbot ID and Chatbot URL in
app.properties.xml(zigbank\platforms\android\customizations\src\main\res\values)

<string name="CHATBOT_ID">@@CHATBOT_ID</string>

<string name="CHATBOT_URL">@@CHATBOT_URL</string>

Live Experience Integration

11–7

11. Live Experience Integration

1. Download live experience android sdk from below download link.

https://www.oracle.com/downloads/cloud/oracle-live-experience-downloads.html

2. Add libs folder at zigbank\platforms\android\app and copy below jars from downloaded sdk
folder in it.

• oracle.wsc.feature.clientsdk.android-7.2.1.1-SNAPSHOT.jar

• peerconnection_android-84.0.4147.105-
25c2ac74afc25f65d111771dbfabd6db25d2498.jar

• tyrus-standalone-client-1.13.jar

• oracle.live.api-release.aar

3. Add Live Experience Client ID and Cloud Address in below two properties under

app.properties.xml(zigbank\platforms\android\customizations\src\main\res\values)

<string name="LX_CLIENT_ID">@@CLIENT_ID</string>

<string name="LX_ADDRESS">@@ADDRESS</string>

Note: Add LX_ADDRESS without https://

For example. If the LX_ADDRESS is https://live.oraclecloud.com then add only
live.oraclecloud.com.

Live Experience Integration

11–8

4. Un-comment the Live Experience SDK’s from zigbank\platforms\android\app\build.gradle.

5. Add LiveExperienceActivtiy.java folder from AppExtensions\live experience\ at

zigbank\platforms\android\app\src\main\java\com\ofss\digx\mobile\android

6. Un-comment LiveExperienceActivity from

zigbank\platforms\android\app\src\main\AndroidManifest.xml

Push Notification 2FA configuration

12–9

12. Push Notification 2FA configuration

If Push notification 2fa is enabled at bank side for any transaction then, the screen displays
message to wait for the push notification to accept/reject the transaction authentication. The
message as well contains a timer of 5 minutes displayed on the UI. This value is set in the UI code.
If bank needs to change this value, bank needs to update the value in UI code:

File path: channel/metadata/user-components/push-out-of-band/push-out-of-band/hook.js

Code to be changed: const mins = <<value>>;

Update the value to what bank needs to set it. This value is in minutes.

So, ideally 5 minutes (existing value in base UI code) is an ideal time. Any changes made in this
value should satisfy below pre-condition.

1. There is an OTP expiration time set in “digx_fw_config_ALL_b” table.

2. Also, there is business policy check set to 10 minutes for validation of the generated 2fa token.
Bank can write their own business policy where they can modify the 10 minutes time.

So, the time in UI code should not exceed 10 minutes and OTP expiration time in
“digx_fw_config_ALL_b” table.

Home

